含油气盆地烃源岩生烃史重建新方法——地质地球化学剖面法

含油气盆地烃源岩生烃史重建新方法——地质地球化学剖面法

一、A new method to reconstruct hydrocarbon-generating histories of source rocks in a petroleum-bearing basin——the method of geological and geochemical sections(论文文献综述)

Jun-Qing Chen,Xiong-Qi Pang,Song Wu,Zhuo-Heng Chen,Mei-Ling Hu,Luo-Fu Liu,Kui-You Ma,Bo Pang,Zhi-Peng Huo[1](2020)在《Method for identifying effective carbonate source rocks:a case study from Middle-Upper Ordovician in Tarim Basin,China》文中指出Hydrocarbon expulsion occurs only when pore fluid pressure due to hydrocarbon generation in source rock exceeds the force against migration in the adjacent carrier beds.Taking the Middle-Upper Ordovician carbonate source rock of Tarim Basin in China as an example,this paper proposes a method that identifies effective carbonate source rock based on the principles of mass balance.Data from the Well YW2 indicate that the Middle Ordovician Yijianfang Formation contains effective carbonate source rocks with low present-day TOC.Geological and geochemical analysis suggests that the hydrocarbons in the carbonate interval are likely self-generated and retained.Regular steranes from GC-MS analysis of oil extracts in this interval display similar features to those of the crude oil samples in Tabei area,indicating that the crude oil probably was migrated from the effective source rocks.By applying to other wells in the basin,the identified effective carbonate source rocks and non-source rock carbonates can be effectively identified and consistent with the actual exploration results,validating the method.Considering the contribution from the identified effective source rocks with low present-day TOC(TOCpd) is considered,the long-standing puzzle between the proved 3 P oil reserves and estimated resources in the basin can be reasonably explained.

陆虹辰[2](2018)在《《烃类资源勘探中如何认识油气显示与封闭》(第七至八章)翻译实践报告》文中研究说明本学位论文为翻译报告,翻译材料节选自油气勘探专着Understanding Oil and Gas SThows and Seals in the Search for Hydrocarbons(《烃类资源勘探中的油气显示与封闭》)。通过本次翻译实践,特别是通过对中英两种科技语言在词汇、句法和风格上的对比,译者能够掌握石油科技文本类型的特点,并锻炼自己的翻译能力。该翻译项目有助于油气勘探业内人士和即将进入该领域的科技工作者认识本领域中的各种问题。该报告详细描述翻译项目,包括内容介绍、语言特点(词汇的行业性、被动语态突出)、语篇特点(善用图表);阐述所采用的翻译策略——德国翻译理论家莱斯提出的文本类型理论。莱斯将文本分为信息型、表情性和操作型。该翻译项目的源文本属于信息型文本,莱斯就信息型文本提出的翻译策略切合本翻译项目。理论阐述之后则是翻译过程介绍——译前准备、语言转换和质量控制。译前准备工作包括专业术语的积累、平行文本的阅读以及借助网络进行信息查找;语言转换过程涉及翻译策略和翻译技巧;质量控制则是如何确保译文的充分性和可读性。为了说明翻译过程,本文给出案例分析,案例包括术语翻译、被动语态的转换、长句处理和图表的转换。通过本次翻译实践,译者发现与本专业相关的学科知识在科技文本翻译中至关重要。学科知识的掌握决定术语的适当转换、句意的充分理解以及前后照应关系的有效建立。此外,翻译策略和技巧的运用也不容忽视。

Ayesha Abbas[3](2018)在《西非下刚果盆地基于三维地震和测井资料的相分析、TOC预测和烃源岩潜力表征》文中提出近年来,关于细粒沉积岩的勘探日益受到重视。本论文基于对西非下刚果盆地A块和S3块200平方公里地区的三维地震资料解释,对该地区烃源岩潜力进行评价与表征研究。其中该地区地层层位自下往上依次为:盐层、Sendji组、Likouala组、Madingo组和Paloukou组。与粗碎屑沉积物相比,烃源岩等细粒沉积物的勘探与研究较为薄弱,优质烃源岩发育的层段较难确定,因此本文拟通过地震相法、沉积相法及速度法等多种技术方法来预测烃源岩的分布。根据三维地震资料,生成各层位的平面厚度图,并对重点层位进行详细研究。Madingo组主要分为上、下两部分,通过古地貌图及海相烃源岩分布特征的研究,可以有效预测优质烃源岩的分布。通过对有机质富集的沉积发育模式、河道走向、沉积样式等的研究,综合认为该区适合有机质的富集和保存。综合利用地质-地球物理等相分析方法对烃源岩的分布规律、发育模式进行研究。有机质具有独特的物理化学性质,使得烃源岩与非烃源岩的测井响应差别明显。已有研究成果表明,对有机质敏感的测井曲线主要由自然伽马、电阻率、声波、密度中子等曲线,这是利用测井资料识别和评价烃源岩的基础。一般情况下,有机碳含量越高的地层自然伽马测井曲线异常越明显,可据此识别并计算烃源岩的各项指标。深水区的高自然伽马异常值对应于凝结段和高TOC值,比如Plankton组浮游生物含量很高,而浮游生物对广泛存在于海相环境中的铀离子有很强的吸附性,因此海相烃源岩一般为较高的伽马异常。单一的岩相组合无法准确地解释深水细粒岩地层沉积过程,因此本文结合测井曲线、岩相垂向叠置样式、准层序的识别以及横向对比等进行研究。基于GR测井曲线特征和岩相叠加样式进行细粒沉积岩层序划分和地层对比,识别出3种岩相叠加样式,由于其特定的GR曲线响应特征而定义为GRP(gamma-ray patterns),即向上减小型GRP、向上增大型GRP和相对稳定型GRP。1)Likouala组GR曲线为相对稳定型,GR测井值没有明显的变化,可知Likouala组沉积时期海平面相对稳定,没有明显的升降变化。2)Madingo组GR曲线波动明显,从下向上可以划分为3期较大时间尺度的相对海平面升降变化,并且横向上各井之间有着较好的对应关系,可以识别3期较为连续的密集段。3)Paloukou组GR曲线为相对稳定型,GR测井值没有明显的变化,可知Paloukou组沉积时期,海平面相对稳定,没有明显的升降变化。对最大洪泛面的研究表明,高有机质含量的泥岩具有较大的GR值。利用烃源岩地震反射特征进行地震相研究,发现烃源岩地震反射特征差异显着。通过研究烃源岩地震反射特征,如频率、连续性、振幅及厚度等,对识别具有“低频、高连续性、强振幅”等特征的烃源岩具有重要意义。其中,“低频、高连续、强振幅”反映的是一个密集反射段,一般为富含有机质的泥岩类沉积物地震发射;平行-亚平行反射结构主要为深水环境中以水平沉积为主的湖相地层发射特征;反射密集段内无不整合,反映了湖相地层的连续沉积,并且持续沉降,中间无沉降间断或构造运动;反射层段具有一定的厚度、分布范围和足够的埋藏深度,据此可判断泥岩是否进入生油门限和能否成为有效烃源岩。烃源岩的发育与沉积相的空间分布密不可分,地震和测井资料的结合有助于沉积环境、频率、反射样式、振幅以及古地貌等地震性质以及沉积相平面分布。综合利用常规测井资料以及结合多种方法进行TOC预测,主要采用经验法和图解法求解。首先,分析测井参数与TOC的相关性。其次,采用多元回归分析、ΔLog R和schomeker方法计算和解释研究区的结果。结果显示用以上三种方法所得到的结果都不甚理想,因此,本论文设计了人工神经网络(ANN)方法用于TOC的准确预测。结果显示生成的模型减小了相对误差,之后将预测结果与实际数据进行了比较,验证了模型的可靠性。利用测井资料对烃源岩热解得到的地球化学参数进行了标定,结果表明:上白垩统烃源岩层序显示出非常好的烃源岩性质,其干酪根类型为II型干酪根。由于缺乏岩心和其他地球化学数据,因此我们主要采用了测井数据进行烃源岩油气潜力的研究。最终,综合利用地震构造解释、古地貌分析、测井资料分析、岩石热解分析及岩石物理分析(部分薄片)等方法,对西非下刚果盆地Madingo组的相分析、TOC预测和烃源岩潜力表征进行了研究并取得了良好效果。

Khaled Aabidi Mohammed Albriki[4](2018)在《Petroleum Generation History of Sirte Basin Source Rocks,Libya》文中认为This thesis aims to describes and to evaluate the source rocks in the largest and richest sedimentary basin in Africa and Libya with approximate area around 600,000 km2,in the main basin troughs which includes(Dur Al Abd-Zallah trough,Hagfa trough,Ajdabiya trough,Kotla trough,Dur Attlha trough,Maragh trough and Eastern Sirte Basin troughs)from where the Sirte basin hydrocarbons generated,expelled and migrated.This work basically based on different types of data mainly geochemical data such as Rock-Eval,TOC data,stratigraphic data,structural data,cultural data,maturity data which includes mainly Vitrinite reflectance data and pyrolysis Tmax data,all these data are collected using 58 well located in the basin troughs and penetrated the target source rocks for this study(Mid Nubian,Etel,Rachmat,Sirte shale,Kalash,and Hagfa shale).The only way to evaluate these source rocks for their organic facies characteristics type and distribution in the basin and also to evaluate these source rock intervals in their maturity levels to establish the generation history of the Cretaceous and late Paleocene source intervals is to divide the whole basin into 7 main troughs,for each individual trough the organic facies geochemical characteristics their distribution and their maturity assessments are cried out based on well to well geochemical correlation using master geochemical sections,geological cross-section and 1D & 2D maturity maps using pyrolysis Tmax data,measured vitrinite reflectance data and modeled maturity using models approaches based on 1D burial history models(LLNL and Arco models),also kerogen transformation modeling work has been on these source rock intervals using 1D well control data and 2D modeling using Trinity software.Organic facies results indicate in this study that Oil bulk property data from more than 20 oil and gas fields indicates D/E organic facies are significant oil and gas contributors similar as B in Sirte Basin.In the western Sirte Basin in Zallah-Dur Al Abd,Hagfa,Kotla and Dur Attalha troughs,F organic facies has identified for Etel,Kalash and Hagfa having %TOCavg < 0.6,whereas the good quality D/E and B organic facies present in Rachmat and Sirte shale both have %TOCavg >1.1.Results from the deepest trough(Ajdabiya),Etel(Gas prone in Wadayet trough),Kalash and Hagfa constitute F organic facies,Rachmat and Sirt shale both have D/E to B organo-facies with %TOCavg >1.2,thus indicating the best organic facies quality in Ajdabiya trough.In Maragh trough,results show that Etel F organic facies and D/E,C to B organic facies related to Middle Nubian,Rachmat and Sirte shale all have %TOCavg > 0.66.Towards the eastern Sirte Basin,in troughs(Hameimat,Faregh,and Sarir)results show that the Middle Nubian,Etel,Rachmat and Sirte shales are strongly dominated by D/E,C and B(%TOCavg > 0.75)organic facies.Source rock maturity show results from 3 selected wells located in Zallah and Dur Al Abd trough show Etel in over-mature level with %Ro(1.38),Rachmat with %Ro(1.02)in late-mature stage and Sirte shale in mid-mature level with %Ro(0.72),Kalash and Hagfa both in this trough shows early to mid-mature level %Ro(0.4-0.7).Towards Kotla and Dur Attalha troughs by using 4 selected wells,analysis show Etel in late-mature stage %Ro(1.31),Rachmat shows mid-mature to late-mature %Ro(0.91)and mid-mature Sirte shale with %Ro(0.67).Kalash and Hagfa both are in early to mid-mature level.In Ajdabiya trough(the deepest in Sirte basin),results from 5 selected wells show that Etel in range of mature level with %Ro(1.81),Rachmat shows over-mature level with %Ro(1.77)and Sirte shale in mid-mature level having %Ro(1.21).Analysis of 9 selected wells from eastern part of the basin where the maximum hydrocarbon expulsion occurred mainly in Maragh,Faregh,Sarir,Hameimat troughs,indicate that Mid Nubian shale have late to over-mature %Ro level(1.25),Etel have mature to late-mature %Ro(1.16)and Rachmat and Sirte shale show mid-mature levels with %Ro(0.6-0.95).The transformation ratio and the expulsion efficiency of the Sirte basin source rocks slight variation for the source rock in different troughs due to the variation of the thermal gradient and maturity levels.The expelled amount of the hydrocarbons have been estimated throughout the basin main troughs from where these source rocks deposited and the results shows that huge amount of petroleum have been generated,expelled,and migrated since the early-late Paleocene,early Miocene,and middle Oligocene time.

陈哲龙,柳广弟,曹正林,高岗,任江玲,杨帆,马万云[5](2018)在《储层沥青成因及其石油地质意义——以准噶尔盆地玛湖凹陷百口泉组为例》文中研究指明通过对玛湖凹陷百口泉组砂砾岩储层中的固体沥青镜下观察及地球化学分析,研究了其赋存特征与来源,分析了储层固体沥青发育的石油地质意义,认为百口泉组储层沥青主要来源于下伏风城组烃源岩,是早期生成的石油成藏后发生逸散,残留重质组分后期经历长时间埋藏热演化形成,玛湖凹陷内部百口泉组固体沥青的首次发现证明了风城组早期生烃的贡献.研究结果表明:百口泉组储层固体沥青在单偏光下呈黑色,分布在溶蚀孔隙、微裂缝和粒间孔等各种不同的孔缝中,总体与岩石颗粒呈镶嵌接触.扫描电镜下观察,固体沥青表面平滑,显示较强的均质性特征,有微裂缝分布,以碳元素为主要成分.由于固体沥青易吸附黏土矿物,降低储层孔渗条件,导致电阻率测井上表现为高阻电性(90Ω以上);其次,储层内原油生标特征与沥青存在差异,导致部分原油呈现混源特征;此外,固体沥青反射率较高(BR0可达1.2%)说明凹陷内百口泉组经历了较高的热成熟演化.研究固体沥青的成因及其影响对于解释百口泉组原油混源现象普遍及揭示玛湖凹陷百口泉组油气成藏过程具有重要意义.

葛翔[6](2017)在《海相油气成藏改造的Re-Os年代学研究》文中指出油气生成、运移、聚集等油气演化过程中关键时刻的定量约束对我们了解整个油气演化过程以及提高油气勘探的成功率都起着至关重要的作用。对于那些经历过复杂构造改造作用的古生代乃至更早期的油气系统,这些关键时刻对于油气勘探显得更为重要。几十年来,包括普通地质分析,盆地模拟,储层流体包裹体分析以及多种同位素测试技术被用来尝试解决这一重要的科学问题。目前研究呈现出由定性到定量,由宏观到微观,由间接到直接的发展趋势,但是现今无论是在学术领域还是在油气勘探中,精确厘定石油及天然气的演化过程仍然需要进一步探索。我国南方扬子板块以及西北的含油气盆地中,地表露头和钻井中油气显示异常丰富,油气资源评价认为在这些盆地里,油气资源量可以达到数十亿桶原油。近十多年来,随着勘探技术的提高,在四川盆地内部相继发现了普光、安岳大气田,在西北部塔里木盆地也相继发现了哈拉哈塘以及富源等大型油田,这些海相油气突破进一步证实了我国海相碳酸盐岩良好的油气勘探前景。然而,与国外海相盆地和国内陆相盆地相比,中国海相层系具有形成时间早、埋藏深度大、含油层系多、演化程度高、成烃过程长、成藏历史复杂与多期构造改造变动等特点。长时间的油气演化过程以及复杂多样的构造作用导致了多期的生排烃,油气成藏呈现多期次复合和多过程改造的特征。为了尝试解决并精确定量约束油气演化过程以及油气演化和构造演化关系等科学问题,本论文选择塔里木盆地哈拉哈塘油藏以及扬子板块内部三个典型古油藏(矿山梁、麻江-万山、米仓山)作为研究对象,在前人对这些地区烃类演化和构造作用研究的基础上,开展原油及古油藏沥青的Re-Os同位素分析,有机地球化学分析,储层流体包裹体分析以及储层伊利石K-Ar同位素分析,并结合磷灰石裂变径迹分析,以及其它一些相关的测试(如沥青反射率,烃类物理性质等),探讨了Re-Os同位素年代学在我国海相油气成藏改造过程中的适用性,并提供了相关的研究实例。通过研究,论主要取得了如下结论与认识:1)结合烃类的有机地球化学分析,储层伊利石K-Ar同位素测试,储层流体包裹体分析以及原油的Re-Os同位素分析,定量分析了塔里木盆地北部哈拉哈塘凹陷石油生成运移过程。原油样品相似的生物标志化合物特征显示烃类来自同一套烃源岩,具有较低的成熟度,曾经经历过生物降解作用,属于同一套油气系统。原油的Re-Os同位素年龄(ca.285 Ma)以及储层伊利石的K-Ar同位素年龄(ca.280-230 Ma)与传统的储层流体包裹体分析(Th:100–110oC)以及盆地模拟结果表现出良好的吻合性,综合表明哈拉哈塘油田原油主要生成于早二叠世,运移聚集则发生在晚二叠世至早三叠世。2)对龙门山北部矿山梁地区低熟沥青及油苗Re-Os同位素和生物标志化合物进行了分析,结合前人对龙门山地区构造演化的认识,探讨了了龙门山北部矿山梁地区多期次油气生成演化过程。生物标志物分析结果显示无论是来自脉体抑或是断层中的沥青都显示出相近的特征并且与元古代-早古生代源岩具有较好吻合性。相反,现今油苗的地球化学分析结果与沥青相比表现出较大的差异,呈现出二叠系烃源岩的特征。沥青的Re-Os同位素分析呈现出两个不同的趋势,取样自一号和三号沥青脉体的沥青得到ca.485 Ma等时线年龄,而二号沥青脉体和断层沥青获得了更为年轻的年龄(ca.165 Ma)。测试的原油样品由于极其相似的Re、Os特征而未能获得有意义的同位素年龄。较老的沥青Re-Os同位素年龄与前人在该地区进行的埋藏史模拟结果以及烃源岩成熟史模拟过程表现出较好的一致性,表明元古代-早古生代烃源岩在奥陶纪时期首次进入石油窗并开始生油。年轻的沥青Re-Os等时线年龄与扬子地区中生代印支-燕山期剧烈的构造活动控制的中古生代地层的二次埋藏作用,以及邻区四川盆地的构造沉积演化特征相吻合,揭示了古老烃源岩第二次进入生烃门限,二次生烃的特征。Re-Os同位素分析定量的揭示了龙门山北部矿山梁地区奥陶纪(ca.485 Ma)和侏罗纪(ca.165 Ma)两期油气生成过程。3)在雪峰山北缘地区,结合不同类型沥青的Re-Os同位素分析以及磷灰石裂变径迹(AFT)分析,揭示了雪峰山地区石油及天然气的演化历程以及油气演化与构造活动的相互关系。ca.430 Ma的低熟沥青Re-Os同位素年龄与早期的盆地模拟结果以及沥青的Rb-Sr同位素年龄(ca.405 Ma)表现出良好的吻合性,进一步证实了低成熟度沥青的Re-Os同位素定年代表了原油的生成时间。磷灰石裂变径迹结果较好的揭示了雪峰山地区燕山期的构造活动。位于雪峰隆起西缘的麻江-万山古油藏内部广泛出露的焦沥青(高熟沥青)的Re-Os同位素分析得到一组70 Ma等时线年龄,除了与AFT结果表现出相关性以外,这一晚白垩世年龄与前期麻江古油藏地区的流体包裹体分析结果,盆地埋藏历史以及原油组成数值模拟结果近于一致,共同指示了原油裂解生成干气以及焦沥青形成的时间。研究揭示了不同类型沥青Re-Os同位素结果具有不同的地质意义,低熟沥青Re-Os年龄指示了原油的形成时间,而高熟焦沥青年龄结果与原油裂解、天然气生成时间相关。4)对米仓山地区沥青进行了反射率、镜下荧光、Re-Os同位素以及磷灰石裂变径迹分析,探讨了米仓山地区烃类演化过程以及其与中新生代构造活动的关系。该地区高沥青反射率(BRo:3.25-4.08),高Tmax值(540oC),无荧光以及不溶于氯仿的特征表明所有沥青为原油裂解形成的高成熟焦沥青。该沥青的Re-Os同位素分析得到一组ca.185 Ma的等时线结果,这一年龄与前人在四川盆地进行的盆地模拟以及该时期较高的流体包裹体温度(160oC)近于一致,表明该时期原油经历高温裂解作用。裂变径迹分析显示该地区的剥蚀抬升构造运动发生白垩纪期间(ca.140 Ma到ca.60 Ma),即原油热裂解作用以后,5000m的剧烈抬升剥蚀作用导致米仓山地区气藏遭受破坏,含沥青元古代-早古生代地层暴露地表。结合焦沥青的Re-Os定年,AFT分析以及前人的认识,论文定量解析了川北米仓山地区油气演化过程,认为原油裂解及天然气藏形成于早侏罗世,而白垩纪的抬升剥蚀作用对气藏起到破化作用。总体而言,本论文选取我国不同的研究区域,综合不同的油气成藏相关的研究方法,通过对油气演化过程中不同类型的烃类(原油、沥青、焦沥青)的Re-Os同位素分析,不仅进一步证实了前人提出的原油及沥青质沥青的Re-Os同位素定年代表原油初始生成时间的观点,并且提出了高成熟度焦沥青的Re-Os同位素年龄与原油裂解天然气形成的时间相关。由于沥青或者焦沥青在加拿大阿尔伯塔盆地、尼日利亚达霍迈盆地、西班牙巴斯克-坎塔布里亚盆地等地广泛存在,结合原油、沥青的Re-Os同位素定年与其它分析测试,可以帮助石油地质工作者更好的理解世界各处含油气系统的时空演化关系,具有重要的理论及实践意义。本论文也证实了Re-Os同位素年代学在我国海相油气多期成藏改造过程中具有适用性,将具有广泛的应用前景。

ZOU Caineng,YANG Zhi,PAN Songqi,CHEN Yanyan,LIN Senhu,HUANG Jinliang,WU Songtao,DONG Dazhong,WANG Shufang,LIANG Feng,SUN Shasha,HUANG Yong,WENG Dingwei[7](2016)在《Shale Gas Formation and Occurrence in China:An Overview of the Current Status and Future Potential》文中指出Shale gas is one of the most promising unconventional resources both in China and abroad. It is known as a form of self-contained source-reservoir system with large and continuous dimensions. Through years of considerable exploration efforts, China has identified three large shale gas fields in the Fuling, Changning and Weiyuan areas of the Sichuan Basin, and has announced more than 540 billion m3 of proven shale gas reserves in marine shale systems. The geological theories for shale gas development have progressed rapidly in China as well. For example, the new depositional patterns have been introduced for deciphering the paleogeography and sedimentary systems of the Wufeng shale and Longmaxi shale in the Sichuan Basin. The shale gas storage mechanism has been widely accepted as differing from conventional natural gas in that it is adsorbed on organic matter or a mineral surface or occurs as free gas trapped in pores and fractures of the shale. Significant advances in the techniques of microstructural characterization have provided new insights on how gas molecules are stored in micro- and nano-scale porous shales. Furthermore, newly-developed concepts and practices in the petroleum industry, such as hydraulic fracturing, microseismic monitoring and multiwell horizontal drilling, have made the production of this unevenly distributed but promising unconventional natural gas a reality. China has 10–36 trillion m3 of promising shale gas among the world’s whole predicted technically recoverable reserves of 206.6 trillion m3. China is on the way to achieving its goal of an annual yield of 30–50 billion m3 by launching more trials within shale gas projects.

Terrence P.MERNAGH[8](2015)在《A Review of Fluid Inclusions in Diagenetic Systems》文中研究指明The study of fluid inclusions can help constrain the conditions at which diagenetic minerals precipitated,leading to a better understanding of the geologic controls and relative timing of changes in porosity and/or mineralising events.Many of the diagenetic minerals are easily deformed and it is important to check for any post-entrapment changes to the inclusions.Possible post-entrapment changes include reaction with the host crystal,necking down,nucleation metastability and thermal reequilibration.The recommended method of detecting these problems is to examine individual fluid inclusion assemblages(FIAs) and report data for each individual FIA.These studies have been enhanced by the development of new micro-analytical techniques such as micro-fluorescence spectroscopy,micro-infrared spectroscopy,nuclear magnetic resonance,various mass spectrometry techniques and the analysis of individual fluid inclusions using laser ablation/decrepitation methods.Special techniques have been developed for hydrocarbon-bearing inclusions such as the Grains containing Oil Inclusions(GOI),Fluid Inclusion Stratigraphy(FIS),and the Molecular Composition of Inclusions(MCI) techniques.The fluid inclusions that form in some minerals during diagenesis provide the only direct means of examining the fluids present in these systems.They provide useful temperature,pressure,and fluid composition data that cannot be obtained by other means.

SANI.A.M.BACHIR[9](2003)在《中国东海西湖凹陷区带评价、盆地模拟及含油气系统》文中指出沉积盆地产生于板块演化的发散或汇聚等不同阶段,以至于它与三种已知板块边界类型密切相关。理解盆地的构造背景有助于确定它在不同发展阶段的地质力学性质(拉张、挤压、剪切),有助于充分理解其沉积特征与地热演化。本文所涉及近东西向展布的弧形构造形成于古生代时期中国板块与西伯利亚板块的碰撞带,而在中生代,中国板块下的Kula-Pacific 板块向西俯冲导致了北北东向和北东向构造(如Duimadao 断层、Diaoyudao断层、Okinawa断层、隆起带和沉降带)以及位于中国板块东部的火山-岩浆带。这些北北东向和北东向断层形成一条巨长的转换断层系列,也是中国大陆板块东缘与菲律宾洋块的一条边界。此断层系列对于西太平洋板块与欧亚板块之间的相对运动起重要作用,于是古生代构造带被改造。在晚中生代与新生代,拉张作用广泛分布于中国东部及邻区,导致了挤压与拉张、隆起与沉降以及大规模的岩浆作用,于是使早先存在的北东-北北东向断层、隆起带与沉降带增强,这也是大的转换断层形成西湖凹陷地层的机理。西湖凹陷是晚白垩-第三纪盆地,位于中国东海大陆架的东部,面积590000km2,处于纬度124030’与127000’之间,经度28030’与31000’之间。了解西湖凹陷的地质与构造背景之后,依次进行系列研究:重建盆地的埋藏史、热史与成熟史模型,以及相继划分可能的含油气系统。含油气区带评价可以看作是一个勘探程序中孤立的研究阶段,含油气区带研究描述了一系列现今圈闭的地质相似性。另一方面含油气系统包含一套活跃源岩及与其有关的所有油气和一个油气藏形成所必须的一切地质要素和作用组成。基本要素包括一套烃源岩、储集层、盖层和上覆岩层,作用是圈闭的形成和油气的生成—运移—聚集。盆地模拟是一个常用于描述一系列包括油气成熟、生成、排出、运移、圈闭及某种程度上保存等模拟过程的术语,而含油气系统模拟试图重建烃类在一个特定系统存在的历史。盆地模拟常要考虑存在于一个盆地中同期的含油气系统。以西湖凹陷研究为例,我们利用4口井及93QY4地震测线等资料进行了盆地一维模拟,模拟了埋藏史、地温史、成熟史及排烃史。通过Baoyunting-1井、Yuquan-1井、Pinghu-5井与Duanqiao井的镜质体反射率和温度资料,建立了不同模型以最终确定与地质模型相关的结果。我们得出如下结论:平湖组地层是高生烃效率的主要源岩,Huagang组作为储层,于是Pinghu-Huagang含油气系统是盆地内最重要的含油气系统;模拟的镜质体反射率(RO)及温度值与所有4口井中的值得到很好的吻合,但RO 与Tmax关系不明显。

XIAO Xianming, LIU Dehan, FU Jiamo, LIU Zufa & SHEN JiaguiState Key Laboratory of Organic Geochemistry, Guanzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China[10](2001)在《Dating hydrocarbon generation and migration based on bitumen reflectance》文中研究指明On the basis of thermal maturation theories of organic matter in sediments and an improved Harweil’s method, a method for dating hydrocarbon generation and migration by means of bitumen reflectance has been suggested. A few representative boreholes in the Tazhong Area of the Tarim Basin was investigated by this method. The results indicate that the three phases of bitumen from the Tazhong Area formed during Middle and Late Ordovician, Late Cretaceous-Early Tertiary, and Late Tertiary, respectively. This implicates that there were three phases of hydrocarbon generation and migration occurring in this area during geological history. This study provided a new idea for the geological application of geochemical data of bitumen.

二、A new method to reconstruct hydrocarbon-generating histories of source rocks in a petroleum-bearing basin——the method of geological and geochemical sections(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、A new method to reconstruct hydrocarbon-generating histories of source rocks in a petroleum-bearing basin——the method of geological and geochemical sections(论文提纲范文)

(2)《烃类资源勘探中如何认识油气显示与封闭》(第七至八章)翻译实践报告(论文提纲范文)

摘要
Abstract
Chapter One Introduction
    1.1 Background of the Translation Project
    1.2 Significance of the Translation Project
    1.3 Structure of the Translation Report
Chapter Two Project Description
    2.1 Introduction of the Source Text
    2.2 Source Text Features
        2.2.1 Lexical Features
        2.2.2 Syntactic Features
        2.2.3 Discourse Features
Chapter Three Theoretical Basis
    3.1 Introduction of Text Type Theory
    3.2 Application of Text Type Theory to Practice
Chapter Four Translation Process and Case Analysis of the Project
    4.1 Translation Process
        4.1.1 Pre-translation
        4.1.2 Language Transference
        4.1.3 Quality Control
    4.2 Case Analysis of the Project
        4.2.1 Translation of Terminology
        4.2.2 Translation of Passive Voice
        4.2.3 Translation of Long Sentences
        4.2.4 Translation of Tables and Figures
Chapter Five Conclusion
    5.1 Enlightenment
    5.2 Limitations of the Translation
Bibliography
Acknowledgements
Appendix Ⅰ Source Text and Target Text
Appendix Ⅱ Glossary
Appendix Ⅲ Publications

(3)西非下刚果盆地基于三维地震和测井资料的相分析、TOC预测和烃源岩潜力表征(论文提纲范文)

Cover letter (resume)
PUBLUCATIONS
摘要
ABSTRACT
DEDICATION
ACRONYMS AND ABBREVATIONS
Chapter 1 Introduction
    1.1 Introduction
    1.2 Location of the area
    1.3 Exploration and research background of the study area
    1.4 objectives of the Research
    1.5 Generalized workflow
    1.6 STRUCTURE OF THE THESIS
Chapter 2 Regional Geology and Tectonic Evolution
    2.1 Introduction
    2.2 Regional geology of the area
    2.3 Geological and tectonic evolution history of the Basin
        2.3.1 Pre-rift stage (Late Jurassic to Berriasian Epoch of Early cretaceous)
        2.3.2 Syn-rift stage (upto Barremian Epoch Early Cretaceous)
        2.3.3 Post-rift stage and transitional stage (Aptian to Recent)
    2.4 Sequence Stratigraphic frame work
    2.5 Petroleum systems and hydrocarbon occurrences
        2.5.1 Source rock
        2.5.2 Reservoir rocks
        2.5.3 Seal rocks
Chapter 3 Data sets and Methodology
    3.1 Introduction to Source of data
        3.1.1 Seismic Data
        3.1.2 Well Data
        3.1.3 Base Map
        3.1.4 Thin sections
        3.1.5 Geochemical data
    3.2 Significance of the research
    3.3 Research Methodology
Chapter 4 Integrated seismic and well data interpretation
    4.1 Introduction
    4.2 Methodology
    4.3 Seismic interpretation analysis
    4.4 Source Rock development pattern analysis
        4.4.1 Structural maps (Time-depth map)
        4.4.2 Source channel analysis of Madingo group in Congo Basin
    4.5 Isochron maps
    4.6 Conclusions
Chapter 5 Analysis of the facies
    5.1 Introduction
    5.2 Methodology
    5.3 Well logs
        5.3.1 Interpretation of Facies analysis base on GR curve
        5.3.2 Analysis based on the GRP (Gamma Ray Pattern) curve
    5.4 Concept of Seismic facies analysis
        5.4.1 Sendji Formation seismic facies analysis
        5.4.2 Integrated facies analysis in Likouala Formation
        5.4.3 Integrated facies analysis in Madingo Formation
        5.4.4 Integrated facies analysis in Paloukou Formation
    5.5 Sedimentary facies
    5.6 Attributes Analysis
    5.7 Conclusion
Chapter 6 Total Organic Carbon Evaluation by well Logs
    6.1 Introduction
    6.2 Methodology
    6.3 Basic theory and background
    6.4 The Rock-Eval Data of the Mohm-1 well
    6.5 TOC Evaluation Methodologies
        6.5.1 Selection of appropriate inputs/Linear regression analysis
        6.5.2 Multiple variate method
        6.5.3 Schmocker and Hester model
        6.5.4 Passey et al. model ΔlogR Method
    6.6 Comparsion models for different data sets
    6.7 A data base approach (ANN)
        6.7.1 Back propagation network design(ANN) Theory
        6.7.2 Comparison of BP predicted TOC vs Measured TOC
    6.8 Conclusions and discussion
CHAPTER 7 SOURCE ROCK MATURTY ASSESSMENT
    7.1 Introduction
    7.2 Oil and Gas Formation
    7.3 Petroleum System
    7.4 Fundamentals of Source Rock
        7.4.1 Factor controlling source rock formation
    7.5 Thermal Transformation of Kerogene
    7.6 Kerogen Classification
    7.7 Rock Eval-Pyrolysis
    7.8 References for the Result Evaluation
    7.9 Maturity Indicators
    7.10 Source Rock Maturity Evaluation of Lower Congo Basin
        7.10.1 Rock-Eval Pyrolysis at Ma-1 well
        7.10.2 Biomarkers analysis at the Wells
    7.11 Conclusion
Chapter 8 Conclusions and Recommendations
    8.1 Main Results
    8.2 Implication for Future research directions
References

(4)Petroleum Generation History of Sirte Basin Source Rocks,Libya(论文提纲范文)

Abstract
Chapter1 Introduction and Literature review
    1.1 Sirte Basin Exploration History
    1.2 Research Background
    1.3 Previous work
        1.3.1 Source rocks and Geochemical assessments
        1.3.2 Thermal history and source rocks maturity levels
        1.3.3 Factors control the accumulation of the organic matter
    1.4 Challenges in the study area
    1.5 Research Objective
    1.6 Research Methodology
    1.7 Dissertation Framework
Chapter2 Geological Setting of Sirte Basin
    2.1 Tectonic orogeny and development of Africa
    2.2 Tectonic History of Libya
    2.3 Tectonic Setting of Sirte Basin
        2.3.1 Regional Fault System in Sirte basin
    2.4 Stratigraphic Fill of Sirte Basin
        2.4.1 Campanian-Maastrichtian Organic Rich Strat in North Africa
        2.4.2 Sirte Basin Source Rock Stratigraphic Framework
        2.4.3 Lower-Middle Cretaceous Nubian(Middle Nubian shale)
        2.4.4 The Etel Formation
        2.4.5 The Rachmat Formation
        2.4.6 The Sirte Formation
        2.4.7 The Kalash Formation
        2.4.8 Hagafa shale(Danian)
    2.5 Summary and Conclusion
Chapter3 Organic Facies in Sirte Basin
    3.1 Introduction
    3.2 Sirte Basin Organic Facies and Stratigraphic Fill
    3.3 Sedimentary Environments and Organic Facies
    3.4 Methodology
    3.5 Zallah and Dur Al Abd Trough Organic Facies
    3.6 Hagfa Trough Organic Facies
    3.7 Ajdabiya Trough Organic Facies
    3.8 Kotla Trough Organic Facies
    3.9 Dur Attalha Trough Organic Facies
    3.10 Maragh Trough Organic Facies
    3.11 Eastern Sirte Basin Organic Facies
    3.12 Organic Facies and Hydrocarbon phase type in Sirte basin
    3.13 Summary and Conclusion
Chapter4 Source Rock Maturity in Sirte Basin
    4.1 Introduction
    4.2 Methodology
    4.3 Basin evolution and tectonic history and Thermal maturity
    4.4 Thermal maturity Previous work
    4.5 Heat Flow and Geothermal Gradient Pattern
    4.6 Maturity levels in Zallah and Dur Al Abd trough
    4.7 Maturity levels in Hagfa trough
    4.8 Maturity in Ajdabiya trough
    4.9 Maturity in Kotla and Dur Attalha trough
    4.10 Maturity in Eastern Sirte basin
    4.11 Summary and Conclusion
Chapter5 Petroleum Generation History of Sirte Basin Source Rocks
    5.1 Introduction
    5.2 Transformation Ratio(TR)based on1D and2D simulation study
    5.3 Source rock Expulsion efficiency and volume expelled
Chapter6 Conclusion and Recommendation
    6.1 Conclusion
    6.2 Recommendations
References
Acknowledgments

(5)储层沥青成因及其石油地质意义——以准噶尔盆地玛湖凹陷百口泉组为例(论文提纲范文)

1 区域地质概况
2 样品与实验方法
3 结果与讨论
    3.1 百口泉组固体沥青赋存特征
    3.2 固体沥青有机地化特征及成因
    3.3 固体沥青发现对本区石油地质的启示
        1) 沥青降低了储层孔渗条件, 且易吸附黏土矿物, 形成高阻电性
        2) 模糊了后期充注原油地球化学信息, 造成原油混源的特征
        3) 记录了地层热演化信息, 为地层经历的温压条件提供了证据
        4) 证明了早期原油的充注和逸散, 为油气成藏过程分析提供了支撑
4 结论

(6)海相油气成藏改造的Re-Os年代学研究(论文提纲范文)

作者简历
摘要
abstract
Chapter 1: Introduction
    1.1 Aims and Objectives
    1.2 Overview
        1.2.1 Hydrocarbon evolution process
        1.2.2 Geochronology of the hydrocarbon evolution
        1.2.3 Current research on the Marine petroleum systems
        1.2.4 Current research status of my study areas
    1.3 Research content, methods and techniques
        1.3.1 Research content
        1.3.2 Research methods and techniques
    1.4 The completed work, main achievements and innovation points
        1.4.1 Completed work
        1.4.2 Main achievements
        1.4.3 Innovation points
Chapter 2: Quantitatively constrain the petroleum evolution: exampledfrom Halahatang Oilfield, Tarim Basin, Northwest China
    2.1 Introduction
    2.2 Geological setting
    2.3 Samples and methods
    2.4 Results
        2.4.1 GC-MS analysis
        2.4.2 Fluid inclusion analysis
        2.4.3 Re-Os analysis
    2.5 Discussions
        2.5.1 Oil Geochemistry of the Halahatang oilfield
        2.5.2 Petroleum evolution timing constraints of the Halahatang oilfield
        2.5.3 The model of the petroleum evolution in Halahatang depression
    2.6 Conclusions
Chapter 3: The timing of petroleum generation and source in relation to tectonism of the Northern Longmen Shan Thrust Belt, Southwest China: Implications for multiple oil generation episodes and sources
    3.1 Introduction
    3.2 Geological setting
    3.3 Samples and Analytical Protocols
    3.4 Results
        3.4.1 GC-MS data
        3.4.2 Re-Os geochronology
    3.5 Discussions
        3.5.1 Bitumen and Oil Geochemistry and source tracing
        3.5.2 Mutiple phases of petroleum generation
    3.6 Implications and Conclusions
Chapter 4: Apatite fission-track and Re-Os geochronology of the Xuefeng Uplift, China: Temporal implications for dry gas associated hydrocarbonsystems
    4.1 Introduction
    4.2 Geological setting
    4.3 Samples and method
    4.4 Results
    4.5 Discussions and Implications
Chapter 5: Neoproterozoic-Cambrian petroleum system evolution of the Micang Shan Uplift, Northern Sichuan Basin, China: Insights frompyrobitumen Re-Os geochronology and apatite fission track analysis
    5.1. Introduction
    5.2. Geological setting
    5.3. Samples and methodology
    5.4. Results
    5.5. Discussion
        5.5.1. Bitumen characteristics in the Micang Shan Uplift
        5.5.2. Timing of oil thermal cracking in the Micang Shan Uplift
        5.5.3. Petroleum system evolution of northern Sichuan Basin
    5.6. Implications and Conclusions
Chapter 6: Conclusions and future work
    6.1 Conclusions
    6.2 Future work
Acknowledgements
Reference Cited

(7)Shale Gas Formation and Occurrence in China:An Overview of the Current Status and Future Potential(论文提纲范文)

1 Introduction
1.1 A globally promising unconventional resource
1.2 Shale gas in China
2 Shale Gas Formation and Occurrence
2.1 Depositional environment and shale system distribution
2.1.1 Depositional environment
2.1.2 Marine shale systems
2.1.3 Lacustrine and transitional shale systems
2.2 Geological characterization
2.2.1 Geochemistry of organic-rich shaleS
(1)Organic matter richness
(2)Kerogen types
(3)Thermal maturation
(4)Effective shale thickness
2.2.2 Gaseous hydrocarbon generation and accumulation
2.3 Microstructural characterization of shale systems
2.3.1 Methodology for microscale characterization
2.3.2 Microporous system in shale
2.3.3 Diagenetic evolution of shale pores
(1)Development and evolution of inorganic matrix pores and primary controlling factors
Sedimentary environment and tectonic setting.
(1)Lithological characteristics and mineral components
(2)Diagenetic evolution
(2)Development and evolution of organic-matter pores
Type of organic matter.
Total Organic Carbon(TOC).
Maturity of organic matter.
(3)Shale reservoir evaluation
3 Engineering Techniques for Shale Gas Exploration and Production
3.1 Geological comprehensive evaluation technology
3.2 Experimental analysis technology
3.3 Well logging techniques
3.4 Resource evaluation technology
3.5‘Sweet spot’selection
3.6 Horizontal multiwell drilling
3.7 Hydraulic fracturing techniques
3.8 Microseismic monitoring practice
4 Future Potential and Challenges of Shale Gas
4.1 Resource potential
4.2 Predicted prospects
4.3 Challenges
4.4 Significance
5 Conclusions

(8)A Review of Fluid Inclusions in Diagenetic Systems(论文提纲范文)

1 Introduction
2 Post-Entrapment Changes of Fluid Inclusions
    2.1 Reaction with the Host Crystal
    2.2 Change in Shape (Necking Down)
    2.3 Nucleation Metastability
    2.4 Thermal Re-equilibration
3 Carbonate and Quartz Cements in Sedimentary Rocks
4 Hydrocarbon Migration
5 Saline Formations
6 Low Temperature Mineral Deposits
    6.1 Mississippi Valley-Type Deposits
    6.2 Sediment-hosted Stratiform Copper Deposits
    6.3 Basin-and Surface-related Uranium Systems
7 Conclusions
Acknowledgements

(9)中国东海西湖凹陷区带评价、盆地模拟及含油气系统(论文提纲范文)

DEDICATION
ACKNOWLEDGEMENT
ABSTRACT
中文摘要
FIGURES AND MAPS
LIST OF ILLUSTRATION
APPENDICES
Chapter one
    1.1 Regional geology of the continental shelf of East China Sea
    1.2 Structural character of the basins in East China Sea
    1.3 Regional evolution of East China Basin
    1.4 Xihu Depression: Geologic setting and evolution
        1.4.1 Geologic setting
        1.4.2 Evolution
        1.4.3 Initial rifting stage
        1.4.4 First transgression and stable subsidence
        1.4.5 Second transgression stage
        1.4.6 Basin Inversion Stage
        1.4.7 Buried Stage
    1.5 Identification, delineation of major structures capable of trapping the generated hydrocarbons: Types of traps and seals
        1.5.1 Types of traps
        1.5.2 Boashu Slope structures
        1.5.3 The central Folded Anticlinal Belt (CFAB)
        1.5.4 Drilling results along the Central Folded Anticlinal Belt: CFAB
        1.5.5 North zone of CFAB
        1.5.6 Transition Zone (Yuquan 27-1 Structure)
        1.5.7 Southern Part of CFAB
    1.6 West Slope (Boashu Slope) drilling results
    1.7 The Eastern Slope inversed structural belt
Chapter Two: Modeling of burial history, thermal maturation and hydrocarbon generation in Xihu depression (East China sea)
    2.1 Data analysis
    2.2 Source rocks geochemistry analysis
    2.3 Data quality
    2.4 Stratigraphic data
    2.5 Geohistory analysis and its associated problems
    2.6 Time scale
    2.7 Paleobathymetric scale
    2.8 Compaction correction
    2.9 Sea-level effects
    2.10 Basin modeling
    2.11 Methodology and Input modeling parameters
    2.12 Input and simulation results
        2.12.1 Lithology percentages of different wells
Chapter Three: Discussion of the results
    3.1 Temperature calibration
    3.2 Maturity calibration
    3.3 Baoyunting-1 Well
    3.4 Pinghu-5 Well
    3.5 Yuquan-1 well
    3.6 Duanqiao-1 well
Chapter four: Petroleum system analysis in Xihu Depression
    4.1 Basic elements
        4.1.1 Source rocks
        4.1.2 Correlation oil/gas-source rock
        4.1.3 Reservoir
        4.1.4 Seal rocks
        4.1.5 Overburden rocks
    4.2 Evaluation of petroleum systems in Xihu Depression
    4.3 Events of Pinghu-Huagang (!) Petroleum system
    4.4 Other facts about Pinghu-Huagang petroleum system
Chapter five: Evaluation of the ultimate oil and gas reserve of Xihu Depression using volumetric and/or dynamic methods depending on the level of exploration
    5.1 Trapping system
    5.2 Good reservoir and combination of reservoir seal
    5.3 Petroleum potential and estimates of the reserves
Conclusion
Recommendations
Reference
中文参考文献
Appendices

四、A new method to reconstruct hydrocarbon-generating histories of source rocks in a petroleum-bearing basin——the method of geological and geochemical sections(论文参考文献)

  • [1]Method for identifying effective carbonate source rocks:a case study from Middle-Upper Ordovician in Tarim Basin,China[J]. Jun-Qing Chen,Xiong-Qi Pang,Song Wu,Zhuo-Heng Chen,Mei-Ling Hu,Luo-Fu Liu,Kui-You Ma,Bo Pang,Zhi-Peng Huo. Petroleum Science, 2020(06)
  • [2]《烃类资源勘探中如何认识油气显示与封闭》(第七至八章)翻译实践报告[D]. 陆虹辰. 西南石油大学, 2018(06)
  • [3]西非下刚果盆地基于三维地震和测井资料的相分析、TOC预测和烃源岩潜力表征[D]. Ayesha Abbas. 中国地质大学, 2018(06)
  • [4]Petroleum Generation History of Sirte Basin Source Rocks,Libya[D]. Khaled Aabidi Mohammed Albriki. 中国石油大学(北京), 2018(01)
  • [5]储层沥青成因及其石油地质意义——以准噶尔盆地玛湖凹陷百口泉组为例[J]. 陈哲龙,柳广弟,曹正林,高岗,任江玲,杨帆,马万云. 中国矿业大学学报, 2018(02)
  • [6]海相油气成藏改造的Re-Os年代学研究[D]. 葛翔. 中国地质大学, 2017(01)
  • [7]Shale Gas Formation and Occurrence in China:An Overview of the Current Status and Future Potential[J]. ZOU Caineng,YANG Zhi,PAN Songqi,CHEN Yanyan,LIN Senhu,HUANG Jinliang,WU Songtao,DONG Dazhong,WANG Shufang,LIANG Feng,SUN Shasha,HUANG Yong,WENG Dingwei. Acta Geologica Sinica(English Edition), 2016(04)
  • [8]A Review of Fluid Inclusions in Diagenetic Systems[J]. Terrence P.MERNAGH. Acta Geologica Sinica(English Edition), 2015(03)
  • [9]中国东海西湖凹陷区带评价、盆地模拟及含油气系统[D]. SANI.A.M.BACHIR. 中国地质大学, 2003(03)
  • [10]Dating hydrocarbon generation and migration based on bitumen reflectance[J]. XIAO Xianming, LIU Dehan, FU Jiamo, LIU Zufa & SHEN JiaguiState Key Laboratory of Organic Geochemistry, Guanzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China. Chinese Science Bulletin, 2001(07)

标签:;  ;  ;  

含油气盆地烃源岩生烃史重建新方法——地质地球化学剖面法
下载Doc文档

猜你喜欢